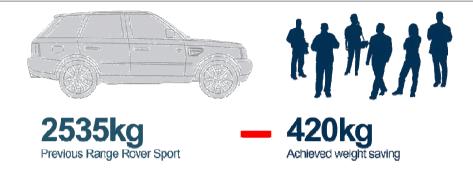


REALCAR Project

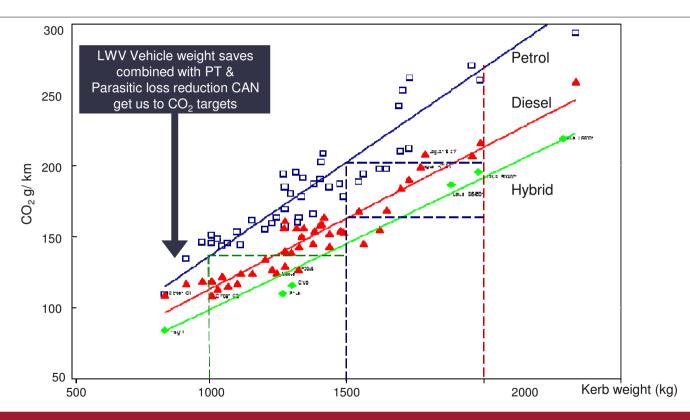
Adrian Tautscher 8th November 2016

RANGE ROVER SPORT

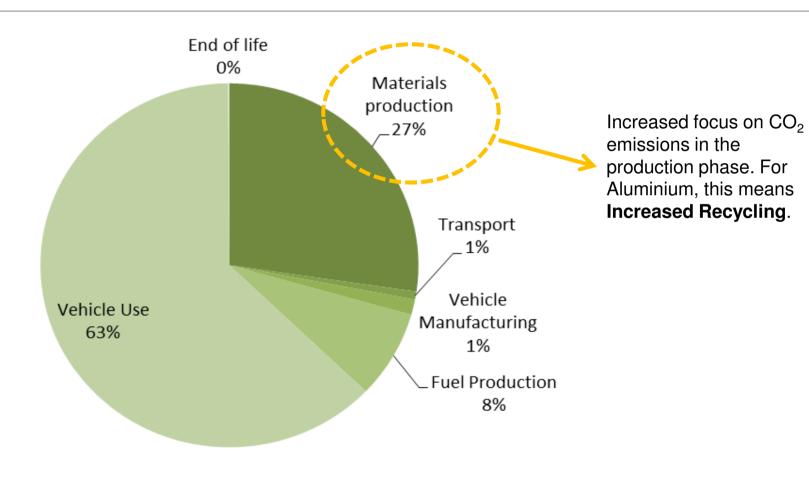

LIGHT WEIGHT VEHICLE STRATEGY

Achieved weight saving of 420kg – equivalent to the weight of six adults

Every 100kg saved in the vehicle mass saves around 2% in fuel consumption

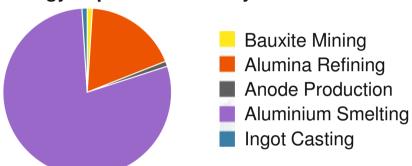


SUSTAINABILITY CHALLENGE CO₂ EMISSIONS BY VEHICLE WEIGHT

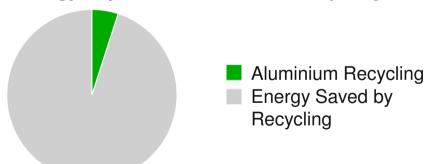

Reduction in Kerb Weight can be Equivalent to Improving Drivetrain Technology

SUSTAINABILITY CHALLENGE

LIFE CYCLE ASSESSMENT


ALUMINIUM PRODUCTION

RECYCLING BENEFITS



Energy required for Primary Aluminium Production

Energy required for Aluminium Recycling

- Aluminium recycling requires up to
 95% less energy than primary aluminium production
- Aluminium recycling saves over 90 million tonnes of CO₂ annually
- 75% of all aluminium ever produced is currently still in **productive use**
- Aluminium can be recycled over and over again without any loss of quality

Source: IAI (http://recycling.world-aluminium.org/home.html)

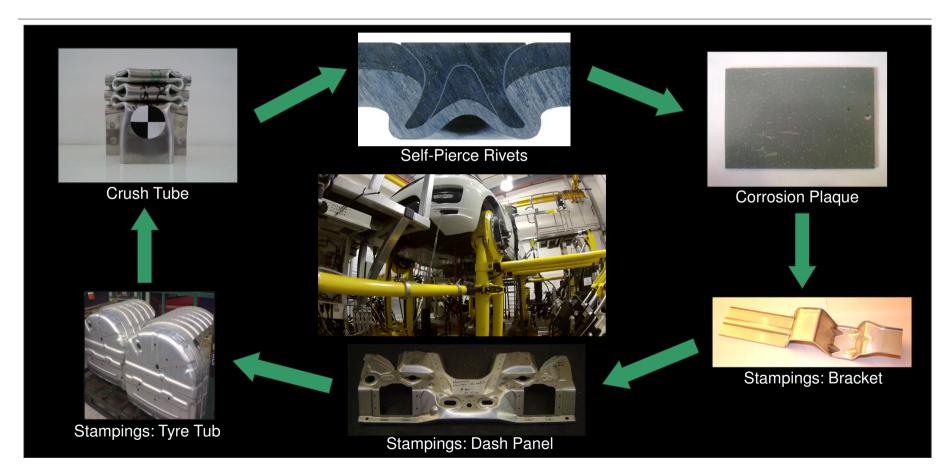
REALCAR PROJECT BACKGROUND

- Research project with Innovate UK
- 'Low Carbon Vehicle' call
- Budget £2m
- Partners: JLR (lead), Novelis, Innoval, Norton Aluminium, Brunel University, Stadco, Zyomax
- Duration: 3 years

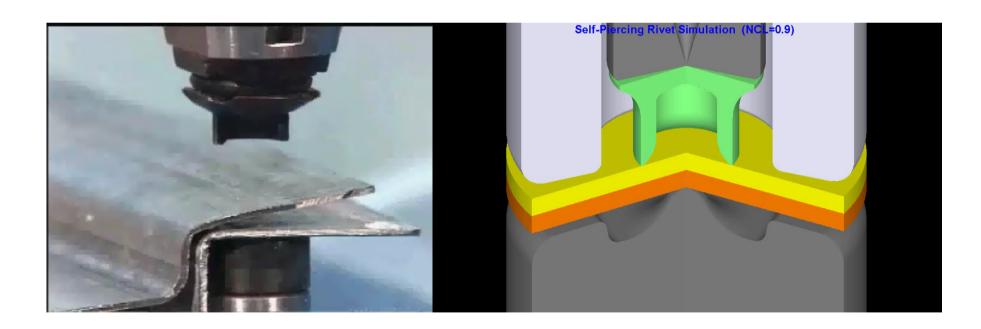
REALCAR evaluated a range of aluminium recycled sources and alloys and delivered a high recycled tolerant grade (RC5754) to support closed-loop recycling of press shop scrap

Innovate UK


REALCAR THREE PILLARS OF INNOVATION



REALCARMATERIALS INNOVATION


REALCARSELF-PIERCE RIVET JOINING

SELF-PIERCE RIVETING (SPR)

Video Demonstration of SPR Technology

REALCAR

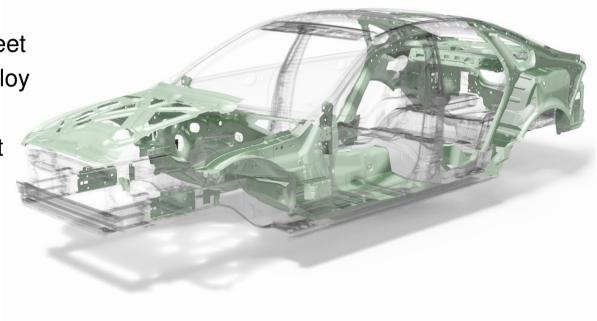
MAUNFACTURING LINE INVESTMENT

Jaguar Land Rover Halewood press shop:

- £5.8 million investment
- Over 1.8 kms of conveyors

Developing strategy:

- 12 press shops currently in the closed-loop
- Evaluations to extend to further press shops
- Lessons learnt document with case studies


JAGUAR XF 5XXX ALUMINIUM ALLOYS

Following the research project 'REALCAR', a new 5xxx aluminium alloy was developed for XE; RC5754

All 5xxx body structure sheet on XE is made from this alloy and all future Jaguar Land Rover vehicles will utilise it

REALCARINNOVATE UK FILM

https://youtu.be/pt5QqXSUhdQ

REALCAR BENEFITING THE UK ECONOMY

50,000 tonnes of Aluminium scrap = 200,000 XE body shells, captured as closed-loop during 2015/16

500,000 tonnes CO2e emissions avoided compared to using primary Aluminium*



12 UK press shops

Over £7m invested by JLR in press shops

£6m invested by Novelis in their UK recycling plant

*Note: Claimed saves by Novelis along their aluminium supply chain

REALCAROUTREACH REALCAR 2

- Research project with Innovate UK
- 'Technology inspired innovation' call
- Category: Advanced Materials
- Budget £1m
- Partners: JLR (lead), Novelis, Innoval, Real Alloy, Warwick University
- Duration: 2.5 years

REALCAR 2 target is to supplement process scrap with post consumer non-auto scrap to achieve higher recycling rates, up to a further 25%

Innovate UK

REALCAR 2FUTURE MATERIALS CHALLENGES

Current waste separation technologies evaluated

MBT processing

Site A

Shredder

Electro- magnetic sorting

Eddy current

Site B

Flotation sorting

Site C

Shredder

Electromagnetic sorting

Eddy current

Air knife separator

Site D

NEXT PROJECT PHASEFUTURE RESEARCH

Developing the aluminium Circular Economy model:

- Continue path to achieve higher recycling rates 75%+
- End-of-Life Vehicles (ELV) source for aluminium
- Application of the next generation scrap sortation technologies to achieve separation by alloy
- Melt processing technologies for impurity tolerance
- Engagement of an entire supply/value chain

Target is to deliver both **Environmental** and **Commercial** benefit

Scrapped vehicles

Vehicles post crushing

Vehicle shredding

Shredder output

MaDE-ELV PROJECTFUTURE MATERIALS CHALLENGES

1988 Range Rover

2010 Range Rover

REALCAROUTREACH

REALCARRECYCLED ALUMINIUM CAR

